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Model Checking

The Goal
Validate specifications of dynamical systems.

Our Approach
1 Model the behaviour of the system.
2 Express the specification as a formula in some logic.
3 Check the validity of the formula in the model.

Constraints
Model checking should be decidable (at minimum!). Ideally, it should
even be fast.
The logic should be expressive — we want to reason about ongoing
behaviour (which may never terminate).
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Example Properties

Safety
Something bad never happens.

Liveness
Something good keeps happening. Or, more precisely:

At some point in the future, a good thing will happen. At some point after
that, another good thing will happen, and so on.

Wednesday Evening
At some point before I next fall asleep, I will have a beer. After I have a
beer, I will be happy until I fall asleep. And by the way, I will actually fall
asleep eventually.
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Normal Modal Logic: Kripke Models

Definition
A Kripke model, ℳ = ⟨ 𝑆, 𝑅, 𝑉 ⟩, where:

𝑆, a set of states.
𝑅 ⊆ 𝑆 × 𝑆, an edge relation.
𝑉 ∶ 𝑆 → 𝒫(𝐴𝑡), a valuation function for a countable set of
propositional atoms, 𝐴𝑡.

𝑅𝑒𝑑

𝑅𝑒𝑑/𝐴𝑚𝑏𝑒𝑟

𝐺𝑟𝑒𝑒𝑛

𝐴𝑚𝑏𝑒𝑟𝐴𝑚𝑏𝑒𝑟𝑂𝑓𝑓
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Normal Modal Logic: Syntax and Semantics

Syntax

𝜑 ∶= ⊤ | ⊥ | 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | □𝜑 | ♢𝜑

Semantics of □ and ♢
Recall: ℳ = ⟨ 𝑆, 𝑅 ⊆ 𝑆 × 𝑆, 𝑉 ∶ 𝑆 → 𝒫(𝐴𝑡) ⟩

⟦□𝜑⟧ = {𝑠 ∈ 𝑆 | ∀𝑠′ ∈ 𝑆. (𝑠, 𝑠′) ∈ 𝑅 → 𝑠′ ∈ ⟦𝜑⟧}

⟦♢𝜑⟧ = {𝑠 ∈ 𝑆 | ∃𝑠′ ∈ 𝑆. (𝑠, 𝑠′) ∈ 𝑅 ∧ 𝑠′ ∈ ⟦𝜑⟧}

Uh-oh!
This only allows us to look finitely many steps into the future, and each
step adds to the length of the formula.
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(Non-)Example Properties
Safety
Something bad never happens.

Something bad, 𝜑. Then:
𝜑 is false at the current state: ¬𝜑
𝜑 is false at every successor: □¬𝜑
𝜑 is false at every successor of every successor: □□¬𝜑
etc...

“Liveness”
Something good eventually happens.

Dually: something good, 𝜑. Then:

𝜑 ∨ ♢𝜑 ∨ ♢♢𝜑 ∨ ⋯
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Introducing: Temporal Logic!

Idea
We’re really trying to reason about things happening over time, so let’s
look at some other modal logics which do exactly that — temporal logics!

Two Approaches
Branching-time: Models capture all possible execution paths.
Formulas quantify over paths. e.g. CTL, CTL*, 𝜇-calculus.
Linear-time: Model is a single possible execution path. Formulas
relate only to that path. Formulas then commonly checked against all
possible paths. e.g. LTL.

Sean Watters (MSP Group, Strathclyde) A Tour of Temporal Logic 10/11/2021 7 / 26



Linear-Time Temporal Logic (LTL): Models

Definition
For a set of atoms 𝐴𝑡, an LTL model is an 𝜔-word on the alphabet 𝒫(𝐴𝑡).

Remarks
An LTL model can be viewed as a single, infinite path through a
Kripke model.
LTL can be adapted to be interpreted over finite paths (LTL𝑓), but
we’ll only look at the standard semantics here.
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LTL: Syntax and Semantics
Syntax

𝜑 ∶= ⊤ | ⊥ | 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | 𝜑 ∧ 𝜑 | X𝜑 | 𝜑U𝜑

Primitive Temporal Operators
Interpret formulas on an infinite word 𝑤𝑖 = 𝑎𝑖𝑎𝑖+1 ⋯

X𝜑 — 𝜑 is true at the next state.

𝑤𝑖 ⊨ X𝜑 ⟺ 𝑤𝑖+1 ⊨ 𝜑

𝜑U𝜓 — 𝜑 is true until (not necessarily including) 𝜓 becomes true,
and 𝜓 must become true in finitely many steps.

𝑤𝑖 ⊨ 𝜑U𝜓 ⟺ ∃𝑛 ≥ 𝑖. (𝑤𝑛 ⊨ 𝜓) ∧ (∀𝑚. 𝑖 ≤ 𝑚 < 𝑛 → 𝑤𝑚 ⊨ 𝜑)
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LTL: Unary Temporal Operators

Definition
F𝜑 — 𝜑 becomes true at some point in the future (in finitely many
steps).

F𝜑 = ⊤U𝜑

Definition
G𝜑 — 𝜑 is true globally (ie, at all states, forever). It’s just the dual
of F.

G𝜑 = ¬F¬𝜑

Remark
It might be tempting to define G𝜑 = 𝜑U⊥, but something goes wrong…
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LTL: Strong and Weak Binary Operators
Strong Until, 𝜑U𝜓
𝜑 holds until 𝜓 holds, and 𝜓 must eventually hold.

Weak Release, 𝜑R𝜓 = ¬(¬𝜑U¬𝜓)
𝜓 holds until (and including) the point where 𝜑 first holds. If 𝜑 never
becomes true, then 𝜓 holds forever.

Weak Until, 𝜑W𝜓 = 𝜑U(𝜓 ∨ G𝜑) = 𝜓R(𝜑 ∨ 𝜓)
𝜑 holds until 𝜓 holds. If 𝜓 never becomes true, 𝜑 will hold forever.

G𝜑 = 𝜑W⊥

Strong Release, 𝜑M𝜓 = ¬(¬𝜑W¬𝜓) = 𝜓U(𝜑 ∧ 𝜓)
𝜓 holds until (and including) the point where 𝜑 first holds, and 𝜑 must
eventually hold.
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LTL: Example Properties

Safety
Something bad never happens: G(¬𝜑)

Liveness
Something good keeps happening: GF𝜑

Wednesday Evening, just for fun
I will drink beer some time before I sleep:
¬ 𝑎𝑠𝑙𝑒𝑒𝑝 U 𝑏𝑒𝑒𝑟
I will fall asleep some time after drinking beer:
(¬ 𝑎𝑠𝑙𝑒𝑒𝑝 U 𝑏𝑒𝑒𝑟) ∧ F 𝑎𝑠𝑙𝑒𝑒𝑝
Between drinking beer and falling asleep, I will be happy:
¬ 𝑎𝑠𝑙𝑒𝑒𝑝 U(𝑏𝑒𝑒𝑟 ∧ (ℎ𝑎𝑝𝑝𝑦 U 𝑎𝑠𝑙𝑒𝑒𝑝))
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Interpreting LTL on Kripke Models

Definition
We call a Kripke model serial if ∀𝑠 ∈ 𝑆. ∃𝑡 ∈ 𝑆. (𝑠, 𝑡) ∈ 𝑅. That is, every
state has at least one successor. Therefore, the model cannot contain
terminal states, and all paths through the model must be 𝜔-paths.

LTL on Serial Kripke Models
Consider a pair of a serial Kripke model and a state in that model, (ℳ, 𝑠),
and an LTL formula 𝜑. Let:

(ℳ, 𝑠) ⊨ 𝜑 ⟺ ∀𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠(ℳ, 𝑠). 𝑝 ⊨ 𝜑

…where 𝑝𝑎𝑡ℎ𝑠 is a function returning all 𝜔-paths in ℳ starting at 𝑠,
mapped with the valuation function s.t. they satisfy the definition of an
LTL model.
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Computation Tree Logic (CTL): Models
And now, branching time.

Interpreting LTL formulas on Kripke models in this manner does not
fully exploit the structure of the model.
Instead of quantifying the formula over all paths, let’s now look at a
branching-time temporal logic, which can also do existential
quantification over paths.

Recall
A (serial) Kripke model: ℳ = ⟨ 𝑆, 𝑅 ⊆ 𝑆 × 𝑆, 𝑉 ∶ 𝑆 → 𝒫(𝐴𝑡) ⟩
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CTL: Syntax and Semantics

Syntax

𝜑 ∶= ⊤ | ⊥ | 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | 𝜑 ∧ 𝜑 | AX𝜑 | A[𝜑U𝜑] | E[𝜑U𝜑]

Primitive Quantified Temporal Operators
AX𝜑 — On all linear paths starting from the current state, X𝜑 holds.
Or: 𝜑 is true at all successor states.
A[𝜑U𝜓] — On all linear paths starting from the current state, 𝜑U𝜓
holds.
E[𝜑U𝜓] — There exists a linear path starting from the current state
where 𝜑U𝜓 holds.
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Semantics of AX, AU, EU

AX𝜑 — On all paths, X𝜑
⟦AX𝜑⟧ = {𝑠 ∈ 𝑆 | ∀𝑠′ ∈ 𝑆. (𝑠, 𝑠′) ∈ 𝑅 → 𝑠′ ∈ ⟦𝜑⟧}

A[𝜑U𝜓] — On all paths, 𝜑U𝜓

⟦A[𝜑U𝜓]⟧ =
{𝑠 ∈ 𝑆 | ∀𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠(ℳ, 𝑠). ∃𝑛 ∈ ℕ. 𝑝𝑛 ∈ ⟦𝜓⟧ ∧ (∀𝑚 < 𝑛. 𝑝𝑚 ∈ ⟦𝜑⟧)}

E[𝜑U𝜓] — There exists a path where 𝜑U𝜓

⟦E[𝜑U𝜓]⟧ =
{𝑠 ∈ 𝑆 | ∃𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠(ℳ, 𝑠). ∃𝑛 ∈ ℕ. 𝑝𝑛 ∈ ⟦𝜓⟧ ∧ (∀𝑚 < 𝑛. 𝑝𝑚 ∈ ⟦𝜑⟧)}
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The Quantified Temporal Operator Zoo

EX𝜑 = ¬AX¬𝜑 — There exists a successor state where 𝜑 holds.
AF𝜑 = A[⊤U𝜑] — Inevitability. 𝜑 eventually holds on all paths.
EF𝜑 = E[⊤U𝜑] — Possibility. 𝜑 eventually holds on at least one
path.
AG𝜑 = ¬EF¬𝜑 — Invariance. 𝜑 is always true on every path.
EG𝜑 = ¬AF¬𝜑 — There exists at least one path where 𝜑 is always
true.
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Expressive Power of LTL and CTL (1)

CTL ⊆ LTL?
No; there are CTL formulas not expressible in LTL. Example:

EX𝑝

An LTL-expressible CTL formula must represent a property of the
form “for all paths, 𝜑 holds”.
So a strictly positive CTL formula which only contains existential
quantifiers cannot be LTL-expressible.

Note
This does not mean that all CTL formulas with existential quantifiers are
not LTL-expressible. For example, ¬EX¬𝑝 = AX𝑝 by duality, and AX𝑝
corresponds to X𝑝 in LTL.
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Expressive Power of LTL and CTL (2)
LTL ⊆ CTL?
No; there are LTL formulas not expressible in CTL. Example:

FG𝑝

CTL requires every operator be individually quantified.
We want to say A(FG𝑝) — “on all paths, past a certain point 𝑝
always holds”.
But our only options are AF(AG𝑝) (too strong), or AF(EG𝑝) (too
weak).

Note
AF(EG𝑝) seems promising, but AF(EG𝑝) ∧ AG(¬𝑝) ≠ ⊥, because there
can exist a path where 𝑝 is never true so long as EG𝑝 is true at some
point on that path.
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Where is normal modal logic?
Note
LTL and CTL as defined here are restricted to serial models. For a cleaner
comparison, let’s also restrict normal modal logic to serial models.

This logic is called “𝐷”, and has ♢⊤ as a theorem (or axiom).

𝐷 ⊂ 𝐶𝑇 𝐿
The propositional fragments are trivially the same. Therefore we only need
to translate □ and ♢ into CTL. Unsurprisingly:

⟦□𝜑⟧ = ⟦AX𝜑⟧
⟦♢𝜑⟧ = ⟦EX𝜑⟧

𝐷 ⊈ 𝐿𝑇 𝐿
⟦♢𝜑⟧ = ⟦EX𝜑⟧, and EX𝜑 is not LTL-expressible.
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Unifying LTL and CTL
Can’t just drop the A’s
Let’s look again at AF(AG𝑝). It’s a stronger statement than A(FG𝑝), as
we saw. Any model that satisfies AF(AG𝑝) must also satisfy A(FG𝑝), but
the same is not true in reverse.

If existential path quantification was the only difference between CTL and
LTL, then we might have though that these formulas would be equivalent.
But they’re not! But that intuition wasn’t entirely off-base…

Theorem
If a CTL formula 𝜑 is expressible in LTL, then it is expressible in LTL
exactly by deleting all path quantifiers.

If we are to prove this theorem, we need a logic which subsumes both LTL
and CTL, and thereby allows us to directly reason about the differences
between A(FG𝑝) and AF(AG𝑝).
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CTL*: Arbitrary Path Quantification

Syntax
The grammar is a little more complex, because we need to ensure that all
temporal operators are quantified. CTL* formulas are generated by 𝜑.

𝜑 ∶= ⊥ | ⊤ | 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | A𝜓 | E𝜓
𝜓 ∶= 𝜑 | ¬𝜓 | 𝜓 ∧ 𝜓 | 𝜓 ∨ 𝜓 | X𝜓 | 𝜓U𝜓

The LTL Fragment
If 𝜑 is an LTL formula, then A𝜑 is the equivalent formula in CTL*.

The CTL Fragment
If 𝜑 is a CTL formula, then 𝜑 is also a CTL* formula.
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The Big Picture

A CTL* formula not in LTL or CTL
E(FG𝑝)

Existential path quantification not expressible in LTL.
Quantification over arbitrary subformulas not allowed in CTL.
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CTL* to LTL (1)

Definition
Let 𝜑𝑑 denote the result of replacing all occurrences of {A, E}𝜓 with 𝜓 in
the CTL* formula 𝜑.

Theorem
Let 𝜑 be a CTL* formula. Then 𝜑 is LTL-expressible iff ⟦𝜑⟧ = ⟦A(𝜑𝑑)⟧.

Lemma
Let ℳ be a Kripke model and 𝑝 an infinite path in ℳ. Then there exists
a prefix 𝑥𝑦 of 𝑝 such that 𝑥𝑦𝜔 is an infinite path in ℳ, and 𝑝 and 𝑥𝑦𝜔

prove the same linear formulas.
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CTL* to LTL (2)

Proof Sketch — full version in Clarke & Draghicescu (1989)
Assume that 𝜑 is equivalent to A𝜓, where 𝜓 is an LTL formula.
Fix a model and state for which 𝜑 holds: ℳ, 𝑠 ⊨ 𝜑.
By the assumption, for all paths 𝑝 starting at 𝑠 in ℳ: 𝑝 ⊨ 𝜓.
By Lemma: For all paths of the form 𝑥𝑦𝜔 starting at 𝑠 in ℳ:
𝑥𝑦𝜔 ⊨ 𝜓.
Let ℳ(𝑝) be the single-path Kripke model formed by the path 𝑝 in
model ℳ. Then for all paths 𝑥𝑦𝜔 in ℳ: ℳ(𝑥𝑦𝜔), 𝑠 ⊨ 𝜑.
ℳ(𝑥𝑦𝜔) is a single-path model, therefore path quantification is
meaningless. So for all paths 𝑥𝑦𝜔 in ℳ: 𝑥𝑦𝜔 ⊨ 𝜑𝑑.
By Lemma: for all paths 𝑝 in ℳ: 𝑝 ⊨ 𝜑𝑑

Therefore: ℳ, 𝑠 ⊨ A𝜑𝑑. QED.
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Thanks!
Final Thoughts

Models need to be extracted from real-world systems/designs, so lots
of research goes into doing this efficiently.
That also means researching temporal logics for other types of model,
like Petri nets.
With appropriate changes to the semantics, we can also consider
non-total models, continuous models, games with players, etc.
Of course, you can do it all coalgebraically too.

Further Reading
Vardi: “Branching vs Linear Time: Final Showdown”
Emerson: “Temporal and Modal Logic”
Maidle: “The Common Fragment of ACTL and LTL”
Clarke & Draghicescu: “Expressibility Results for Linear-Time and
Branching-Time Logics”
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