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Plan

1 Introduction to the µ-calculus.

1 Model Checking

2 Kripke Semantics

3 Strict Positivity

4 The Closure (enter the madness)

2 Introduction to well-scoped De Bruijn syntax.

1 Thinnings

2 Weakening

3 Parallel substitution

4 Defining the closure?

3 A peek at sublimely-scoped De Bruijn syntax (if time permits). (It won’t).
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Logic as a Specification Language (1)

A logic is a formal system for making statements of fact. eg: propositional logic, first-order
logic, etc.

Traditionally, we define the meaning of formulae relative to some mathematical structure
called a model. (Model-theoretic semantics).

The model checking problem for a logic is the problem of deciding whether, given a formula
and model of the logic, the formula is validated in that model.

Model Checking as a formal verification technique involves representing the system
undergoing verification as a model, and the properties being verified as formulas. As long as
the model checking problem for the logic is decidable, we can algorithmically verify that the
property is true.
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Logic as a Specification Language (2)

Two questions:

1 What is the right notion of model for real-world systems?

2 Which logics (best) let us reason about such models?
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Propositional Logic

Given some set A of propositional atoms, for all a ∈ At, let PL be the set of terms generated
by:

φ := a | ¬φ | φ ∧ φ | φ ∨ φ | φ ⇒ φ

Models are valuation functions At → 2.

Propositional Logic for Model Checking?

The Good: Model checking problem is decidable.

The Bad: Not very expressive; purely propositional encodings are clunky.

How about first-order logic? Much more expressive, but too expressive! Not decidable!
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Kripke Semantics (1)

Key idea: Computers and programs tend to progress in discreet time steps, with their
properties potentially changing at each step.

Let’s consider models that reflect that!
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Kripke Semantics (2)

Definition

A Kripke model is a tuple (S ,T ,V ) of a set of states S , a transition relation
T : S → S → Prop, and a valuation function V : A → S → Prop (given some set A of atomic
propositions).

Notice that:

S and T induce a (possibly infinite) graph-like structure.

Each state s ∈ S is equipped with a model of propositional logic, a 7→ V a s.

Partial application of T on some state s ∈ S yields the “is a successor of s” predicate.
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Modal Logic (1)
For all propositional atoms a ∈ At, let ML be the set of terms generated by:

φ := a | ¬φ | φ ∧ φ | φ ∨ φ | φ ⇒ φ | □φ | ♢φ

Given a Kripke model M = (S ,T ,V ), let J−K − : ML → S → Prop, where:

JaK s := V a s

J¬φK s := ¬ (JφK s)

Jφ ∧ ψK s := (JφK s)× (JψK s)

Jφ ∨ ψK s := (JφK s) + (JψK s)

Jφ ⇒ ψK s := (JφK s) → (JψK s)

J□φK s := ∀t ∈ (T s). JφK t

J♢φK s := ∃t ∈ (T s). JφK t
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Modal Logic (2)

ML for Model Checking?

Good: Model checking problem is still decidable.

Good: Kripke models are well-suited to representing real systems.

Bad: Expressivity is still limited; can only reason about fixed, finite time steps.

We cannot express, for example:

φ is always true.

φ eventually becomes true, in at least one possible future.

φ remains true at least until ψ becomes true, in all possible futures.

We currently can’t reason about infinte or unbounded behaviour.

There’s a neat way around that. . .
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The Modal µ-Calculus (1)

For all propositional atoms a ∈ At and variable names x ∈ Var, let µML be the set of terms
generated by:

φ := a | ¬a | x | φ ∧ φ | φ ∨ φ | □φ | ♢φ | µx .φ | νx .φ

Given a Kripke model M and an intepretation of free variables i : Var → S → Prop, let:

JxKi s := i x s

Jµx . φKi s := µ ((U : S → Prop) 7→ JφKi [x :=U]) s

Jνx . φKi s := ν ((U : S → Prop) 7→ JφKi [x :=U]) s

Where i [x := U] denotes updating the mapping of x to U in i .
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The Modal µ-Calculus (2)

Syntax:
φ := a | ¬a | x | φ ∧ φ | φ ∨ φ | □φ | ♢φ | µx .φ | νx .φ

Semantics of µx . φ:
Jµx . φKi := µ (U 7→ JφKi [x :=U])

Important notes:

Not every map has well-defined least/greatest fixpoints. Kleene’s Fixpoint Theorem
guarantees that this one will, so long as it is monotone.

J−K being strictly positive guarantees that this will be the case.

This is why the syntax of µML does not allow arbitrary negations or implication.
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Fixpoint Unfolding

At the heart of the µ-calculus is the semantic equivalance:

ηx . φ ≡ φ[ηx .φ / x ]

We call φ[ηx .φ / x ] the unfolding of ηx . φ.

For example: let E (p) := µx . p ∨ ♢x . Then:

E (p)

≡ p ∨ ♢(E (p))
≡ p ∨ ♢(p ∨ ♢(E (p)))
≡ . . .

This being a least fixpoint says that the formula will be validated in finitely many unfoldings.
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Fixpoint Formula Examples

Formula Meaning
µx .x ⊥
νx .x ⊤
νx .□x All paths are infinite.

µx .□x All paths are finite.

νx .♢x There is at least one infinite path.

νx .p ∧□x “Always p”

µx .p ∨ ♢x “Possibly p”

µx .p ∨□x “Eventually p”

νy .µz .(♢z ∧□y) exercise for the reader
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The Closure (1)

Definition

The closure of a formula φ is the minimal set which contains φ, and is closed under taking
unfoldings of fixpoint formulas, and direct subformulas of non-fixpoint formulas.

In other words, it is the minimal set C satisfying:

φ ∈ C

⃝φ ∈ C ⇒ φ ∈ C , where ⃝ ∈ {□,♢}
φ ⋆ ψ ∈ C ⇒ φ ∈ C and ψ ∈ C , where ⋆ ∈ {∧,∨}
ηx .φ ∈ C ⇒ φ[µx .φ / x ] ∈ C , where η ∈ {µ, ν}
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The Closure (2)
The closure encapsulates the semantics of a formula in a syntactic way:

Its graph directly yields an automaton that accepts (possibly infinite) paths through Kripke
models that validate the formula.

Some facts about the closure:

1 It is always non-empty (trivial).

2 It is always finite (a bit less trivial).

3 Fixpoint formulae and their unfoldings always have the same closure.

4 If φ and ψ have the same closure, then φ ≡ ψ.

5 But the other direction does not hold; semantically equivalent formulae may have
different closures.

6 Worse: even if φ =α ψ, then they may still have different closures (up to α-equivalence).
(Wickedness! Heresy!)
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Finiteness of the Closure (1)

Theorem

For all φ, the closure of φ is finite.

Intuition: Unfoldings can increase the size of the formula, but the number of new subformulas
always decreases.
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Closures of Unfoldings

Theorem

For any fixpoint formula ηx .φ, both it and its unfolding φ[ηx .φ / x ] have the same closure.
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Instability Under Alpha Equivalence

Theorem

There exist formulas φ and ψ such that φ =α ψ, but Cφ ̸= Cψ.

“That’s just not nice!” - Sam Lindley, 2024
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