The Madness of the Modal μ -Calculus Not your granny's syntax with binding!

Sean Watters

University of Strathclyde

28th Oct 2024

Plan

- **1** Introduction to the μ -calculus.
 - Model Checking
 - Ø Kripke Semantics
 - Strict Positivity
 - The Closure (enter the madness)
- Introduction to well-scoped De Bruijn syntax.
 - Thinnings
 - Ø Weakening
 - 8 Parallel substitution
 - Optimize the closure?
- S A peek at *sublimely-scoped* De Bruijn syntax (if time permits). (It won't).

Logic as a Specification Language (1)

A **logic** is a formal system for making statements of fact. eg: propositional logic, first-order logic, etc.

Traditionally, we define the meaning of formulae relative to some mathematical structure called a **model**. (Model-theoretic semantics).

The **model checking problem** for a logic is the problem of deciding whether, given a formula and model of the logic, the formula is validated in that model.

Model Checking as a **formal verification** technique involves representing the system undergoing verification as a model, and the properties being verified as formulas. As long as the model checking problem for the logic is decidable, we can algorithmically verify that the property is true.

Logic as a Specification Language (2)

Two questions:

- What is the right notion of model for real-world systems?
- Which logics (best) let us reason about such models?

Propositional Logic

Given some set A of propositional atoms, for all $a \in At$, let PL be the set of terms generated by:

$$\varphi := \mathbf{a} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \Rightarrow \varphi$$

Models are valuation functions At \rightarrow 2.

Propositional Logic for Model Checking?

- The Good: Model checking problem is decidable.
- The Bad: Not very expressive; purely propositional encodings are clunky.

How about first-order logic? Much more expressive, but too expressive! Not decidable!

Kripke Semantics (1)

Key idea: Computers and programs tend to progress in discreet time steps, with their properties potentially changing at each step.

Kripke Semantics (2)

Definition

A **Kripke model** is a tuple (S, T, V) of a set of states S, a transition relation $T: S \rightarrow S \rightarrow Prop$, and a valuation function $V: A \rightarrow S \rightarrow Prop$ (given some set A of atomic propositions).

Notice that:

- S and T induce a (possibly infinite) graph-like structure.
- Each state $s \in S$ is equipped with a model of propositional logic, $a \mapsto V \ a \ s$.
- Partial application of T on some state $s \in S$ yields the "is a successor of s" predicate.

Modal Logic (1)

For all propositional atoms $a \in At$, let ML be the set of terms generated by:

$$\varphi := \mathbf{a} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \Rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi$$

Given a Kripke model $\mathcal{M} = (S, T, V)$, let $\llbracket - \rrbracket - : ML \to S \to \mathsf{Prop}$, where:

$$\begin{bmatrix} a \end{bmatrix} s := V \ a \ s$$
$$\begin{bmatrix} \neg \varphi \end{bmatrix} s := \neg (\llbracket \varphi \rrbracket s)$$
$$\begin{bmatrix} \varphi \land \psi \end{bmatrix} s := (\llbracket \varphi \rrbracket s) \times (\llbracket \psi \rrbracket s)$$
$$\begin{bmatrix} \varphi \land \psi \rrbracket s := (\llbracket \varphi \rrbracket s) + (\llbracket \psi \rrbracket s)$$
$$\begin{bmatrix} \varphi \Rightarrow \psi \rrbracket s := (\llbracket \varphi \rrbracket s) \rightarrow (\llbracket \psi \rrbracket s)$$
$$\begin{bmatrix} \Box \varphi \rrbracket s := \forall t \in (T \ s). \llbracket \varphi \rrbracket t$$
$$\begin{bmatrix} \Diamond \varphi \rrbracket s := \exists t \in (T \ s). \llbracket \varphi \rrbracket t$$

Modal Logic (2)

ML for Model Checking?

- Good: Model checking problem is still decidable.
- Good: Kripke models are well-suited to representing real systems.
- Bad: Expressivity is still limited; can only reason about fixed, finite time steps.

We cannot express, for example:

- φ is always true.
- φ eventually becomes true, in at least one possible future.
- φ remains true at least until ψ becomes true, in all possible futures.

We currently can't reason about infinte or unbounded behaviour.

There's a neat way around that...

The Modal μ -Calculus (1)

For all propositional atoms $a \in At$ and variable names $x \in Var$, let μML be the set of terms generated by:

$$\varphi := \mathbf{a} \mid \neg \mathbf{a} \mid \mathbf{x} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu \mathbf{x}.\varphi \mid \nu \mathbf{x}.\varphi$$

Given a Kripke model \mathcal{M} and an intepretation of free variables $i : Var \rightarrow S \rightarrow Prop$, let:

$$\llbracket x \rrbracket_i \ s := i \ x \ s$$
$$\llbracket \mu x. \ \varphi \rrbracket_i \ s := \mu \ ((U : S \to \mathsf{Prop}) \mapsto \llbracket \varphi \rrbracket_{i[x:=U]}) \ s$$
$$\llbracket \nu x. \ \varphi \rrbracket_i \ s := \nu \ ((U : S \to \mathsf{Prop}) \mapsto \llbracket \varphi \rrbracket_{i[x:=U]}) \ s$$

Where i[x := U] denotes updating the mapping of x to U in i.

The Modal μ -Calculus (2)

Syntax:

$$\varphi := \mathbf{a} \mid \neg \mathbf{a} \mid \mathbf{x} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu \mathbf{x}.\varphi \mid \nu \mathbf{x}.\varphi$$

Semantics of $\mu x. \varphi$:

$$\llbracket \mu \mathsf{x}. \varphi \rrbracket_i := \mu \ (U \mapsto \llbracket \varphi \rrbracket_{i[\mathsf{x}:=U]})$$

Important notes:

- Not every map has well-defined least/greatest fixpoints. Kleene's Fixpoint Theorem guarantees that this one will, so long as it is monotone.
- $\llbracket \rrbracket$ being strictly positive guarantees that this will be the case.
- $\bullet\,$ This is why the syntax of μML does not allow arbitrary negations or implication.

Fixpoint Unfolding

At the heart of the $\mu\text{-calculus}$ is the semantic equivalance:

 $\eta x. \varphi \equiv \varphi [\eta x. \varphi / x]$

We call $\varphi[\eta x.\varphi / x]$ the **unfolding** of $\eta x. \varphi$.

For example: let $E(p) := \mu x$. $p \lor \Diamond x$. Then:

$$E(p) \equiv p \lor \Diamond(E(p)) \equiv p \lor \Diamond(p \lor \Diamond(E(p))) \equiv \dots$$

This being a *least* fixpoint says that the formula will be validated in *finitely* many unfoldings.

Fixpoint Formula Examples

(corrections in blue per.)

The Closure (1)

Definition

The **closure** of a formula φ is the minimal set which contains φ , and is closed under taking unfoldings of fixpoint formulas, and direct subformulas of non-fixpoint formulas.

In other words, it is the minimal set C satisfying:

$$\varphi \in C$$

$$\bigcirc \varphi \in C \Rightarrow \varphi \in C, \text{ where } \bigcirc \in \{\Box, \Diamond\}$$

$$\varphi \star \psi \in C \Rightarrow \varphi \in C \text{ and } \psi \in C, \text{ where } \star \in \{\land, \lor\}$$

$$\eta x.\varphi \in C \Rightarrow \varphi[\mu x.\varphi / x] \in C, \text{ where } \eta \in \{\mu, \nu\}$$

The Closure (2)

The closure encapsulates the semantics of a formula in a syntactic way:

Its graph directly yields an automaton that accepts (possibly infinite) paths through Kripke models that validate the formula.

Some facts about the closure:

- It is always non-empty (trivial).
- 2 It is always finite (a bit less trivial).
- Sixpoint formulae and their unfoldings always have the same closure.

1 the and thave the same dosure, then same. Falle! Outs.

- But the other direction does not hold; semantically equivalent formulae may have different closures.
- Worse: even if φ =_α ψ, then they may still have different closures (up to α-equivalence). (Wickedness! Heresy!)

Theorem

For all φ , the closure of φ is finite.

Theorem

For all φ , the closure of φ is finite.

Theorem

For all φ , the closure of φ is finite.

$$\alpha := \qquad \forall y. \mu z. (\diamond z \land \Box y)$$

$$\beta := \quad \mu z. (\diamond z \land \Box \alpha)$$

Theorem

For all φ , the closure of φ is finite.

$$\alpha := \qquad \forall y. \mu z. (\diamond z \land \Box y)$$

$$\beta := \qquad \mu z. (\diamond z \land \Box \alpha)$$

$$\phi \beta \land \Box \alpha$$

Theorem

For all φ , the closure of φ is finite.

$$\alpha := \qquad \forall y. \mu z. (\diamond z \land \Box y)$$

$$\beta := \qquad \mu z. (\diamond z \land \Box \alpha)$$

$$\diamond \beta \land \Box \alpha$$

$$\diamond \beta \qquad \Box \alpha$$

Theorem

For all φ , the closure of φ is finite.

Intuition: Unfoldings can increase the size of the formula, but the number of new subformulas always decreases.

 μ -Calculus 101

Theorem

$$\alpha := \qquad \forall y. \mu_z. (\diamond z \land \Box y) \quad \beta := \mu_z. (\diamond z \land \Box (\forall y. \mu_z. (\diamond z \land \Box y)))$$

$$\beta := \quad \mu_z. (\diamond z \land \Box \alpha) \quad (\land z \land \Box \alpha) \quad (\diamond z \land \Box \alpha) \quad (\land z \land \Box \alpha) \quad (\land z \land \Box \alpha) \quad (\land z \land \Box$$

Theorem

Theorem

$$\alpha := \qquad \forall y.\muz. (\diamond z \land \Box y) \qquad \beta := \muz. (\diamond z \land \Box (\forall y.\muz. (\diamond z \land \Box y))) \beta := \\ \muz. (\diamond z \land \Box \alpha) \qquad \qquad \Diamond \beta \land \Box (\forall y.\muz. (\diamond z \land \Box y)) \diamond \beta \land \Box \alpha \qquad \qquad \land \beta \land \Box (\forall y.\muz. (\diamond z \land \Box y)) \diamond \beta \land \Box \alpha \qquad \qquad \land \beta \land \Box (\forall y.\muz. (\diamond z \land \Box y))$$

Theorem

Theorem

$$\alpha := \qquad \forall y. \mu z. (\diamond z \land \Box y) \\ \beta := \quad \mu z. (\diamond z \land \Box y) \\ \beta := \quad \mu z. (\diamond z \land \Box \alpha) \\ \langle \beta \land \Box \alpha \\ \langle \beta \land$$

Theorem

$$\alpha := \qquad \forall y. \mu z. (\diamond z \land \Box y) \\ \beta := \qquad \mu z. (\diamond z \land \Box \alpha) \\ \beta := \qquad \mu z. (\diamond z \land \Box \alpha) \\ \rho \land \Box \alpha \\ \rho & \Box \alpha \\ \rho$$

Theorem

$$\alpha := \qquad \forall y. \mu z. (\diamond z \land \Box y) \\ \beta := \qquad \mu z. (\diamond z \land \Box \alpha) \\ \beta := \qquad \mu z. (\diamond z \land \Box \alpha) \\ \delta \beta \land \Box \alpha \\ \delta \beta & \Box \alpha \\ \delta \beta &$$

Theorem

There exist formulas φ and ψ such that $\varphi =_{\alpha} \psi$, but $C_{\varphi} \neq C_{\psi}$.

"That's just not nice!" - Sam Lindley, 2024

Theorem

There exist formulas φ and ψ such that $\varphi =_{\alpha} \psi$, but $C_{\varphi} \neq C_{\psi}$.

"That's just not nice!" - Sam Lindley, 2024

$$\beta \coloneqq \mu^{2} \cdot (\diamond^{2} \land \Box (\forall y \cdot \mu^{2} \cdot (\diamond^{2} \land \Box y)))$$
$$\beta' \coloneqq \mu^{1} \cdot (\diamond^{1} \land \Box (\forall y \cdot \mu^{2} \cdot (\diamond^{2} \land \Box y)))$$

$$\beta' := \langle \diamond z \land \Box \rangle$$
, ($\diamond z \land \Box \langle \diamond z \land z \land \rangle$))

There exist formulas φ and ψ such that $\varphi =_{\varphi} \psi_i$ but $\mathbb{C}_{\varphi} \neq \mathbb{C}_{\psi}$

"That's just not nice!" - Sam Lindley, 2024

$$\beta' := \mu_{\mathbf{X}} \cdot (\diamond_{\mathbf{X}} \cdot \wedge \Box (\diamond_{\mathbf{Y}} \cdot \mu_{\mathbf{Z}} \cdot (\diamond_{\mathbf{Z}} \wedge \Box_{\mathbf{y}})))$$

'That's just not nice!" - Sam Lindley, 2024

$$\beta' := \beta' \wedge \Box (\forall x \cdot \land \Box (\forall x \cdot \land \Box (\forall x \cdot \land \Box (\forall y))))$$

$$\Rightarrow \beta' \wedge \Box (\forall y \cdot \mu z \cdot (\forall z \land \Box y)))$$

$$\Rightarrow \beta' \qquad \Box (\forall y \cdot \mu z \cdot (\forall z \land \Box y))$$

$$\beta' := \mu_{\mathbf{X}} \cdot (\diamond_{\mathbf{X}} \cdot \wedge \Box (\diamond_{\mathbf{Y}} \cdot \mu_{\mathbf{Z}} \cdot (\diamond_{\mathbf{Z}} \wedge \Box_{\mathbf{y}})))$$

$$\diamond \beta' \wedge \Box (\diamond_{\mathbf{Y}} \cdot \mu_{\mathbf{Z}} \cdot (\diamond_{\mathbf{Z}} \wedge \Box_{\mathbf{y}}))$$

$$\diamond \beta' \qquad \Box (\diamond_{\mathbf{Y}} \cdot \mu_{\mathbf{Z}} \cdot (\diamond_{\mathbf{Z}} \wedge \Box_{\mathbf{y}}))$$

$$\alpha := \forall_{\mathbf{Y}} \cdot \mu_{\mathbf{Z}} \cdot (\diamond_{\mathbf{Z}} \wedge \Box_{\mathbf{y}})$$

$$\beta' := \mu \times . (\diamond \times . \land \Box (\diamond y . \mu \times . (\diamond \times \land \Box y)))$$

$$\diamond \beta' \land \Box (\diamond y . \mu \times . (\diamond \times \land \Box y))$$

$$\diamond \beta' \Box (\diamond y . \mu \times . (\diamond \times \land \Box y))$$

$$\alpha := \forall y . \mu \times . (\diamond \times \land \Box y)$$

$$\beta := \mu \times . (\diamond \times \land \Box \alpha)$$

$$\beta' := \mu_{X} \cdot (\Diamond_{X} \cdot \land \Box (\bigvee_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y})))$$

$$\Diamond \beta' \land \Box (\bigvee_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y}))$$

$$\Diamond \beta' \Box (\bigvee_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y}))$$

$$\langle z := \bigvee_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y})$$

$$\beta := \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{X}) \neq \beta' \parallel!$$

$$\beta' := \mu_{\mathbf{X}} \cdot (\Diamond \mathbf{X} \cdot \wedge \Box (\flat \mathbf{Y} \cdot \mu_{\mathbf{Z}} \cdot (\Diamond \mathbf{Z} \wedge \Box \mathbf{y})))$$

$$\Diamond \beta' \qquad \Box (\flat \mathbf{Y} \cdot \mu_{\mathbf{Z}} \cdot (\Diamond \mathbf{Z} \wedge \Box \mathbf{y}))$$

$$\Diamond \beta' \qquad \Box (\flat \mathbf{Y} \cdot \mu_{\mathbf{Z}} \cdot (\Diamond \mathbf{Z} \wedge \Box \mathbf{y}))$$

$$\alpha := \forall \mathbf{Y} \cdot \mu_{\mathbf{Z}} \cdot (\Diamond \mathbf{Z} \wedge \Box \mathbf{y})$$

$$\beta := \mu_{\mathbf{Z}} \cdot (\Diamond \mathbf{Z} \wedge \Box \alpha) \neq \beta' \parallel!$$

$$\Diamond \beta \wedge \Box \alpha$$

$$\beta' := \mu_{X} \cdot (\Diamond_{X} \cdot \land \Box (\searrow_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y})))$$

$$\Diamond \beta' \qquad \Box (\bigotimes_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y})))$$

$$\Diamond \beta' \qquad \Box (\bigotimes_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y})))$$

$$\alpha := \bigvee_{Y} \cdot \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{Y})$$

$$\beta := \mu_{Z} \cdot (\Diamond_{Z} \land \Box_{X}) \neq \beta' \parallel!$$

$$\Diamond \beta \land \Box_{X}$$

$$\Diamond \beta \qquad \Box_{X}$$

 $\beta' := \mu_{\mathbf{X}}, (\Diamond_{\mathbf{X}}, \wedge \Box) (\downarrow_{\mathbf{Y}}, \mu_{\mathbf{Z}}, (\diamond_{\mathbf{Z}} \wedge \Box)_{\mathbf{Y}}))$ \$β' ∧ □ (vy.μz. (\$z ∧ □y)) (y□ ~ 52). EH. YU) $\alpha := \gamma y . \mu z . (\delta z \land \Box y)$ $\beta := \mu z . (\delta z \land \Box \alpha) \neq \beta' \parallel !$ OB A DX 00