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The type of lists is one of the most elementary inductive data types. It has been studied
and used extensively by computer scientists and programmers for decades. Two conceptually
similar structures are those of finite sets and multisets, which can be thought of as unordered
analogues to lists. However, capturing unordered structures in a data type while maintaining
desirable properties such as decidable equality and the correct equational theory is challenging.

The usual approach to formalise unordered structures in mathematics is to represent them as
functions (with finite support): finite sets as X Ñ 2, and finite multisets as X Ñ N, respectively.
However, these representations do not enjoy decidable equality, even if the underlying type X
does.

Meanwhile the approach taken in most programming languages is to pretend — one uses
a list (or another ordered structure for efficiency) internally, but hides it and any invariants
behind a layer of abstraction provided by an API. However, each set or multiset can then be
represented by many different lists, meaning that the equational theory might not be correct.
This is a problem in a dependently typed setting, where having equality as a first-class type
allows us to distinguish between different representations of the same set.

In the setting of homotopy type theory (HoTT) [14], we can use higher inductive types
(HITs) to define the identities on an inductive type simultaneously with its elements. This
allows us to define a data type which enjoys both decidable equality and the right equational
theory, as demonstrated by Choudhury and Fiore [3]. However, many proof assistants today
do not support HITs; thus, the main question we set out to answer in this work is whether it
is possible in ordinary dependent type theory to define data types of finite sets and multisets,
which:

(i) have decidable equality iff the underlying set has decidable equality; and

(ii) satisfy the equational theories of finite sets and multisets.

For property (ii), we take as our success criteria the facts that the type of finite sets is the
free idempotent commutative monoid [7], and that finite multisets are the free commutative
monoid. Thus, we are really aiming to find data types for the free idempotent commutative
monoid and free commutative monoid, which satisfy the above property (i). We accomplish
this by restricting our attention to only those sets with decidable equality that can be totally
ordered. We can then form a type of sorted lists over such a set. Provided we treat the existence
of the ordering data carefully, this type turns out to give us exactly finite sets when the order
is strict, and finite multisets when it is non-strict.

We show that our constructions satisfy universal properties, in the sense that they are left
adjoints to forgetful functors — this is the standard way to state freeness in the language of
category theory. However, note that the notion of freeness is with respect to e.g. totally ordered
monoids, rather than all monoids. For proving the universal properties and for defining the
categories involved, we need function extensionality. However we stress that the constructions
themselves work in ordinary dependent type theory, without function extensionality.

˚This is an extended abstract of a paper that was published at APLAS 2023 [10]. All results are formalised
in Agda and are available at: https://www.seanwatters.uk/agda/fresh-lists/.

https://www.seanwatters.uk/agda/fresh-lists/
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Fresh Lists Fresh lists, the key inductive data type of this work, were first introduced by
C. Coquand to represent contexts in the simply typed lambda calculus [4]. The type of fresh
lists is a parameterised data type similar to the type of ordinary lists, with the additional
requirement that in order to adjoin a new element x to a list xs, that element x must be “fresh”
with respect to all other elements already present in the list xs. We follow the Agda standard
library [1] in considering a generalised notion of freshness, given by an arbitrary binary relation
on the carrier set. We can recover Coquand’s original notion of freshness by choosing inequality
as our freshness relation.

Finite Sets as Sorted Lists Our candidate representation for finite sets satisfying the above
properties (i) and (ii) is the type of sorted lists without duplicates. We obtain this by the
appropriate instantiation of the type of fresh lists; namely, FListpA,ăq for some type A : Set
and a strict total order ă : A Ñ A Ñ Prop. We then prove an extensionality principle analogous
to set extensionality which allows us to show that FListpA,ăq is an idempotent commutative
monoid with the empty list as the unit, and the operation which merges two sorted lists as the
multiplication.

To establish (ii), we would like to show that this type is the free idempotent commutative
monoid. However, there is a wrinkle — the domain of the sorted list functor cannot be simply
the category of sets Set, since we require that the underlying set is equipped with a strict total
order in order to form the type of sorted lists. Assuming that any set can be equipped with
such an order is a strongly classical axiom called the Ordering Principle which is strictly weaker
than the well-ordering principle [8, Ch. 5 §5], but still implies LEM [13]. Therefore to remain
constructive, we must restrict the domain of the functor to strictly totally ordered sets. Thus,
we define the categories STO of strictly totally ordered sets, and OICMon of ordered idempotent
commutative monoids (ordering data is also required for the monoids so that it can be preserved
by the forgetful functor; this is satisfied for FListpA,ăq via the lexicographic ordering). With
the categories in place, we can prove that the type of sorted lists is functorial, and left adjoint
to the forgetful functor U : OICMon Ñ STO, giving us the desired universal property.

Other Free Algebraic Structures The choice to implement sorted lists as an instantiation
of the type of fresh lists reveals further paths to explore; what happens for other instantiations
of the freshness relation? It turns out that different choices each yield a different free structure.

In particular, it should come as no surprise that finite multisets are represented by sorted
lists with duplicates (i.e., fresh lists over a total order ď). The proof of the adjunction is
very similar to the previous case, however we obtain a different extensionality principle: since
the membership relation for multisets is valued in Set rather than Prop, we must prove an
isomorphism rather than merely a bi-implication. Other such results are summarised in Table 1.

Freshness Relation Free Algebraic Structure Data Structure
ď, a total order Ordered Commutative Monoid Sorted lists

ă, a strict total order Ordered Idempotent Comm. Monoid Sorted lists w/o duplicates
λx.λy.K Pointed Set Maybe
λx.λy.J Monoid List

‰ Left-Regular Band Monoid Lists without duplicates
“ Reflexive Partial Monoid 1 ` pA ˆ Ną0q

Table 1: Free algebraic structures as instantiations of freshlists (carrier set A)
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Related Work Appel and Leroy [2] recently introduced canonical binary tries as an exten-
sional representation of finite maps. These can be used to construct finite sets with elements
from the index type. Krebbers [9] extended this technique to form extensional finite maps over
arbitrary countable sets of keys.

The technique of using underlying ordering data to construct extensional data structures is
not new, and has been employed in a number of Coq libraries for many years [5][6][12][11].
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