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The modal µ-calculus is an extension of the basic modal logic K with least and greatest
fixpoint operators. It is of foundational importance in the field of model checking [1], and
also of considerable theoretical interest to logicians for its rich properties. The model checking
and satisfiability problems for the µ-calculus are decidable, yet the logic is highly expressive
— it subsumes the temporal logics LTL, CTL, CTL* and propositional dynamic logic, and is
equivalent to the bisimulation-invariant fragment of monadic second-order logic [5]. Of interest
to the practising type theorist, the µ-calculus admits a constructive semantics in containers
which is currently in the early stages of being explored [10].

This (still work-in-progress) project is concerned with formalising the correctness and finite-
ness proofs for a particular key syntactic construction on µ-calculus formulas, namely their
(Fischer-Ladner) closure. This can be thought of as a succinct graph representation of the
formula. The definition of the closure is not structurally recursive, and indeed, the proof of its
finiteness (originally due to Kozen [6]) is fairly technical, particularly in a formal setting where
issues like variable binding and substitution must be treated seriously.

A key feature of our work is the use of syntax-with-binding as an inductive presentation of
rational codata — data structures that loop back on themselves — in a manner similar to the
technique first demonstrated by Ghani et al [3], and Hamana [4].

We work in Agda, using guarded corecursion. At the time of submission, the bulk of the
formalisation is complete (up to and including Theorem 1). Theorem 2 is still a work-in-
progress.

The µ-Calculus Formulas in the modal µ-calculus are generated by the following grammar,
parameterised by some set A of atomic propositions. We represent formulas in Agda as an
inductive data type using well-scoped de Bruijn indices for the variables, but for convenience
we write variable names here. Note the lack of implication or arbitrary negations; this is
required to maintain strict positivity, which is important when giving the semantics of the
fixpoint operators.

µML :“ J | K | A |  A | µML^ µML | µML_ µML | l µML | 3 µML | µx.µML | νx.µML

We can define substitution for these formulas in standard fashion, which allows us to de-
fine the unfolding of a fixpoint formula as its direct subformula with the outermost variable
substituted for the whole formula: unfold pµx.ϕq “ ϕ rx :“ µx.ϕs.

The Closure The closure of a µ-calculus formula ϕ is the least set of formulas that contains
ϕ and is closed under the “single-step closure relation”, which relates modal and propositional
formulas to their direct subformulas, and fixpoint formulas to their unfoldings. We define the
membership relation for the closure ´ PC ´ as the transitive reflexive closure of this single-step
relation, where “ψ PC ϕ” means “ψ is in the closure of ϕ”.

˚Work-in-progress Agda formalisation available at https://github.com/Sean-Watters/mu-calc-de-bruijn

https://github.com/Sean-Watters/mu-calc-de-bruijn
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The membership relation PC allows us to characterise the closure, but does not provide
an obviously terminating algorithm to compute it. Note that it is not immediate from the
definition of PC that the closure graph only contains finitely many nodes, as the unfolding of
ϕ is not structurally smaller than ϕ, and it is not immediately clear that a chain of unfoldings
would eventually loop back on itself.

Kozen’s original proof of finiteness involves an alternative definition of the closure which is
structurally recursive. The key to it is the so-called expansion map, which can be thought of as
the “maximal unfolding” — the expansion map sequentially instantiates every free variable for
its binder, in order from most recently bound to least. This definition of the closure is finite
by construction, but it is difficult to directly prove it equivalent to the standard definition in a
formal setting.

Our approach is to first define two closure algorithms; one that produces an infinite cotree
via guarded corecursion directly from the definition of PC (which is trivially correct), and one via
Kozen’s inductive algorithm (which is intrisically finite). Crucially, the inductive data structure
we use for the latter includes a notion of back-edges, which allows us to unfold it to an infinite
codata structure. We then prove that the coinductive algorithm is bisimilar to the unfolding of
the inductive one, and by doing so, obtain correctness and finiteness for both constructions.

Rational Codata Just as a rational number is one whose decimal expansion is finitely pre-
sentable as a prefix plus a loop, an element of a rational codata type is an infinite data structure
for which every infinite path eventually falls into a repeating cycle. They arise via the rational
fixpoint of endofuctors, which is a particular sub-coalgebra of the final coalgebra [8][9].

We argue that the correct way to think about the closure of a µ-calculus formula is as a
rational codata structure. Inductive structures such as lists and trees forget the backedges,
which are crucial to the properties we wish to prove, meanwhile simply using cotrees forgets
any evidence we may have had about the closure being finitely presentable.

In the style of Ghani et al. [3], we represent the closure as an inductive “µ-calculus formula-
shaped tree”. That is: such trees store data at both nodes and leaves, nodes are labelled by
formula constructors t^,_,l,3, µ, νu (and have the appropriate arities), and we also have
variables which we consider as pointers to tµ, νu-nodes. Thus, this presentation is a syntax-
with-binding. We define their unfolding to non-wellfounded cotrees (with the same node arities
and labelling) via guarded corecursion.

Bisimilarity for cotrees is defined as the pointwise lifting of propositional equality, for which
we create a DSL for compositional proof, following the technique first demonstrated by Daniels-
son [2]. We now have all we need to prove that the two definitions of the closure are equivalent:

Theorem 1. The direct coinductive definition of the closure is bisimilar to the unfolding of the
inductive syntax-with-binding definition.

Our notions of correctness for each algorithm relate the paths through the tree produced
to PC , in the sense that a path exists from ϕ to ψ iff ψ PC ϕ. For both kinds of tree, this is
an instance of the “Any” predicate transformer (or rather, in the inductive case, a variant of
it that allows backedge traversal). If we can transport proofs of Any across bisimulations of
the form found in Theorem 1, then we can prove the finite-by-construction inductive algorithm
correct. The proof of this fact is still work-in-progress.

Theorem 2 (WIP). Let T be the tree with backedges produced by the inductive closure algorithm
applied to ϕ. Then for all formulas ψ there is a path to ψ in T iff ψ PC ϕ. That is, T really is
the closure of ϕ.
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Conclusions and Future Work We believe this to be the first serious attempt at formalising
the Fischer-Ladner closure of the modal µ-calculus in a proof assistant, though others have
previously formalised different aspects of the µ-calculus in Agda [10], Rocq [7], and LEGO [11].
A natural next step in this programme would be to formalise the game semantics of the µ-
calculus (where the closure plays a key role), and in doing so obtain a correct-by-construction
model checker.

In our opinion, the modal µ-calculus and type theory are ripe for further cross-fertilisation.
For example, we believe that rational codata types are currently under-explored, and that this
work provides a good example of their utility. In particular, we would like to further investigate
the inductive syntax-with-binding presentation and its unfolding, and whether these generalise
usefully to containers. Our hope is to develop a type-theoretic framework for ergonomically
reasoning about finitely-presentable infinite data.
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