{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra
module Algebra.Properties.AbelianGroup
{a ℓ} (G : AbelianGroup a ℓ) where
open AbelianGroup G
open import Function.Base using (_$_)
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Properties.Group group public
xyx⁻¹≈y : ∀ x y → x ∙ y ∙ x ⁻¹ ≈ y
xyx⁻¹≈y x y = begin
x ∙ y ∙ x ⁻¹ ≈⟨ ∙-congʳ $ comm _ _ ⟩
y ∙ x ∙ x ⁻¹ ≈⟨ assoc _ _ _ ⟩
y ∙ (x ∙ x ⁻¹) ≈⟨ ∙-congˡ $ inverseʳ _ ⟩
y ∙ ε ≈⟨ identityʳ _ ⟩
y ∎
⁻¹-∙-comm : ∀ x y → x ⁻¹ ∙ y ⁻¹ ≈ (x ∙ y) ⁻¹
⁻¹-∙-comm x y = begin
x ⁻¹ ∙ y ⁻¹ ≈˘⟨ ⁻¹-anti-homo-∙ y x ⟩
(y ∙ x) ⁻¹ ≈⟨ ⁻¹-cong $ comm y x ⟩
(x ∙ y) ⁻¹ ∎