{-# OPTIONS --cubical-compatible --safe #-}
module Function.Properties.Inverse where
open import Axiom.Extensionality.Propositional using (Extensionality)
open import Data.Product.Base using (_,_; proj₁; proj₂)
open import Function.Bundles
open import Level using (Level)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
import Relation.Binary.PropositionalEquality.Core as P
import Relation.Binary.PropositionalEquality.Properties as P
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
open import Function.Consequences
import Function.Construct.Identity as Identity
import Function.Construct.Symmetry as Symmetry
import Function.Construct.Composition as Composition
private
variable
a b ℓ ℓ₁ ℓ₂ : Level
A B C D : Set a
S T : Setoid a ℓ
isEquivalence : IsEquivalence (Inverse {a} {b})
isEquivalence = record
{ refl = λ {x} → Identity.inverse x
; sym = Symmetry.inverse
; trans = Composition.inverse
}
↔-isEquivalence : IsEquivalence {ℓ = ℓ} _↔_
↔-isEquivalence = record
{ refl = λ {x} → Identity.inverse (P.setoid x)
; sym = Symmetry.inverse
; trans = Composition.inverse
}
open module ↔ {ℓ} = IsEquivalence (↔-isEquivalence {ℓ}) using ()
renaming (refl to ↔-refl; sym to ↔-sym; trans to ↔-trans) public
Inverse⇒Injection : Inverse S T → Injection S T
Inverse⇒Injection I = record
{ to = to
; cong = to-cong
; injective = inverseʳ⇒injective Eq₂._≈_ to Eq₂.refl Eq₁.sym Eq₁.trans inverseʳ
} where open Inverse I
Inverse⇒Bijection : Inverse S T → Bijection S T
Inverse⇒Bijection I = record
{ to = to
; cong = to-cong
; bijective = inverseᵇ⇒bijective Eq₂._≈_ Eq₂.refl Eq₁.sym Eq₁.trans inverse
} where open Inverse I
Inverse⇒Equivalence : Inverse S T → Equivalence S T
Inverse⇒Equivalence I = record
{ to = to
; from = from
; to-cong = to-cong
; from-cong = from-cong
} where open Inverse I
↔⇒↣ : A ↔ B → A ↣ B
↔⇒↣ = Inverse⇒Injection
↔⇒⤖ : A ↔ B → A ⤖ B
↔⇒⤖ = Inverse⇒Bijection
↔⇒⇔ : A ↔ B → A ⇔ B
↔⇒⇔ = Inverse⇒Equivalence
module _ (ext : ∀ {a b} → Extensionality a b) where
↔-fun : A ↔ B → C ↔ D → (A → C) ↔ (B → D)
↔-fun A↔B C↔D = mk↔′
(λ a→c b → to C↔D (a→c (from A↔B b)))
(λ b→d a → from C↔D (b→d (to A↔B a)))
(λ b→d → ext λ _ → P.trans (strictlyInverseˡ C↔D _ ) (P.cong b→d (strictlyInverseˡ A↔B _)))
(λ a→c → ext λ _ → P.trans (strictlyInverseʳ C↔D _ ) (P.cong a→c (strictlyInverseʳ A↔B _)))
where open Inverse