------------------------------------------------------------------------
-- The Agda standard library
--
-- Many properties which hold for `∼` also hold for `flip ∼`. Unlike
-- the module `Relation.Binary.Construct.Flip.Ord` this module does not
-- flip the underlying equality.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary

module Relation.Binary.Construct.Flip.EqAndOrd where

open import Data.Product.Base using (_,_)
open import Function.Base using (flip; _∘_)
open import Level using (Level)

private
  variable
    a b p  ℓ₁ ℓ₂ : Level
    A B : Set a
       < : Rel A 

------------------------------------------------------------------------
-- Properties

module _ ( : Rel A ) where

  refl : Reflexive   Reflexive (flip )
  refl refl = refl

  sym : Symmetric   Symmetric (flip )
  sym sym = sym

  trans : Transitive   Transitive (flip )
  trans trans = flip trans

  asym : Asymmetric   Asymmetric (flip )
  asym asym = asym

  total : Total   Total (flip )
  total total x y = total y x

  resp :  {p} (P : A  Set p)  Symmetric  
             P Respects   P Respects (flip )
  resp _ sym resp  = resp (sym )

  max :  {}  Minimum    Maximum (flip ) 
  max min = min

  min :  {}  Maximum    Minimum (flip ) 
  min max = max

module _ { : Rel A ℓ₁} ( : Rel A ℓ₂) where

  reflexive : Symmetric   (  )  (  flip )
  reflexive sym impl = impl  sym

  irrefl : Symmetric   Irreflexive    Irreflexive  (flip )
  irrefl sym irrefl x≈y y∼x = irrefl (sym x≈y) y∼x

  antisym : Antisymmetric    Antisymmetric  (flip )
  antisym antisym = flip antisym

  compare : Trichotomous    Trichotomous  (flip )
  compare cmp x y with cmp x y
  ... | tri< x<y x≉y y≮x = tri> y≮x x≉y x<y
  ... | tri≈ x≮y x≈y y≮x = tri≈ y≮x x≈y x≮y
  ... | tri> x≮y x≉y y<x = tri< y<x x≉y x≮y

module _ (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) where

  resp₂ : ∼₁ Respects₂ ∼₂  (flip ∼₁) Respects₂ ∼₂
  resp₂ (resp₁ , resp₂) = resp₂ , resp₁

module _ ( : REL A B ) where

  dec : Decidable   Decidable (flip )
  dec dec = flip dec

------------------------------------------------------------------------
-- Structures

isEquivalence : IsEquivalence   IsEquivalence (flip )
isEquivalence { = } eq = record
  { refl  = refl   Eq.refl
  ; sym   = sym    Eq.sym
  ; trans = trans  Eq.trans
  } where module Eq = IsEquivalence eq

isDecEquivalence : IsDecEquivalence   IsDecEquivalence (flip )
isDecEquivalence { = } eq = record
  { isEquivalence = isEquivalence Dec.isEquivalence
  ; _≟_           = dec  Dec._≟_
  } where module Dec = IsDecEquivalence eq

isPreorder : IsPreorder    IsPreorder  (flip )
isPreorder { = } { = } O = record
  { isEquivalence = O.isEquivalence
  ; reflexive     = reflexive  O.Eq.sym O.reflexive
  ; trans         = trans  O.trans
  } where module O = IsPreorder O

isTotalPreorder : IsTotalPreorder    IsTotalPreorder  (flip )
isTotalPreorder O = record
  { isPreorder = isPreorder O.isPreorder
  ; total      = total _ O.total
  } where module O = IsTotalPreorder O

isPartialOrder : IsPartialOrder    IsPartialOrder  (flip )
isPartialOrder { = } O = record
  { isPreorder = isPreorder O.isPreorder
  ; antisym    = antisym  O.antisym
  } where module O = IsPartialOrder O

isTotalOrder : IsTotalOrder    IsTotalOrder  (flip )
isTotalOrder O = record
  { isPartialOrder = isPartialOrder O.isPartialOrder
  ; total          = total _ O.total
  } where module O = IsTotalOrder O

isDecTotalOrder : IsDecTotalOrder    IsDecTotalOrder  (flip )
isDecTotalOrder O = record
  { isTotalOrder = isTotalOrder O.isTotalOrder
  ; _≟_          = O._≟_
  ; _≤?_         = dec _ O._≤?_
  } where module O = IsDecTotalOrder O

isStrictPartialOrder : IsStrictPartialOrder  < 
                       IsStrictPartialOrder  (flip <)
isStrictPartialOrder {< = <} O = record
  { isEquivalence = O.isEquivalence
  ; irrefl        = irrefl < O.Eq.sym O.irrefl
  ; trans         = trans < O.trans
  ; <-resp-≈      = resp₂ _ _ O.<-resp-≈
  } where module O = IsStrictPartialOrder O

isStrictTotalOrder : IsStrictTotalOrder  < 
                     IsStrictTotalOrder  (flip <)
isStrictTotalOrder {< = <} O = record
  { isEquivalence = O.isEquivalence
  ; trans         = trans < O.trans
  ; compare       = compare _ O.compare
  } where module O = IsStrictTotalOrder O

------------------------------------------------------------------------
-- Bundles

setoid : Setoid a   Setoid a 
setoid S = record
  { isEquivalence = isEquivalence S.isEquivalence
  } where module S = Setoid S

decSetoid : DecSetoid a   DecSetoid a 
decSetoid S = record
  { isDecEquivalence = isDecEquivalence S.isDecEquivalence
  } where module S = DecSetoid S

preorder : Preorder a ℓ₁ ℓ₂  Preorder a ℓ₁ ℓ₂
preorder O = record
  { isPreorder = isPreorder O.isPreorder
  } where module O = Preorder O

totalPreorder : TotalPreorder a ℓ₁ ℓ₂  TotalPreorder a ℓ₁ ℓ₂
totalPreorder O = record
  { isTotalPreorder = isTotalPreorder O.isTotalPreorder
  } where module O = TotalPreorder O

poset : Poset a ℓ₁ ℓ₂  Poset a ℓ₁ ℓ₂
poset O = record
  { isPartialOrder = isPartialOrder O.isPartialOrder
  } where module O = Poset O

totalOrder : TotalOrder a ℓ₁ ℓ₂  TotalOrder a ℓ₁ ℓ₂
totalOrder O = record
  { isTotalOrder = isTotalOrder O.isTotalOrder
  } where module O = TotalOrder O

decTotalOrder : DecTotalOrder a ℓ₁ ℓ₂  DecTotalOrder a ℓ₁ ℓ₂
decTotalOrder O = record
  { isDecTotalOrder = isDecTotalOrder O.isDecTotalOrder
  } where module O = DecTotalOrder O

strictPartialOrder : StrictPartialOrder a ℓ₁ ℓ₂ 
                     StrictPartialOrder a ℓ₁ ℓ₂
strictPartialOrder O = record
  { isStrictPartialOrder = isStrictPartialOrder O.isStrictPartialOrder
  } where module O = StrictPartialOrder O

strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂ 
                   StrictTotalOrder a ℓ₁ ℓ₂
strictTotalOrder O = record
  { isStrictTotalOrder = isStrictTotalOrder O.isStrictTotalOrder
  } where module O = StrictTotalOrder O