{-# OPTIONS --cubical-compatible --safe #-}
open import Function.Base using (flip; _∘_)
open import Relation.Binary
import Relation.Binary.Consequences as Consequences
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Negation using (contradiction)
module Relation.Binary.Properties.Poset
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Poset P renaming (Carrier to A)
import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict
import Relation.Binary.Properties.Preorder preorder as PreorderProperties
open Eq using (_≉_)
infix 4 _≥_
_≥_ : Rel A p₃
x ≥ y = y ≤ x
open PreorderProperties public
using () renaming
( converse-isPreorder to ≥-isPreorder
; converse-preorder to ≥-preorder
)
≥-isPartialOrder : IsPartialOrder _≈_ _≥_
≥-isPartialOrder = record
{ isPreorder = ≥-isPreorder
; antisym = flip antisym
}
≥-poset : Poset p₁ p₂ p₃
≥-poset = record
{ isPartialOrder = ≥-isPartialOrder
}
open Poset ≥-poset public
using () renaming
( refl to ≥-refl
; reflexive to ≥-reflexive
; trans to ≥-trans
; antisym to ≥-antisym
)
infix 4 _≰_
_≰_ : Rel A p₃
x ≰ y = ¬ (x ≤ y)
≰-respˡ-≈ : _≰_ Respectsˡ _≈_
≰-respˡ-≈ x≈y = _∘ ≤-respˡ-≈ (Eq.sym x≈y)
≰-respʳ-≈ : _≰_ Respectsʳ _≈_
≰-respʳ-≈ x≈y = _∘ ≤-respʳ-≈ (Eq.sym x≈y)
infix 4 _<_
_<_ : Rel A _
_<_ = ToStrict._<_
<-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_
<-isStrictPartialOrder = ToStrict.<-isStrictPartialOrder isPartialOrder
<-strictPartialOrder : StrictPartialOrder _ _ _
<-strictPartialOrder = record
{ isStrictPartialOrder = <-isStrictPartialOrder
}
open StrictPartialOrder <-strictPartialOrder public
using ( <-resp-≈; <-respʳ-≈; <-respˡ-≈)
renaming
( irrefl to <-irrefl
; asym to <-asym
; trans to <-trans
)
<⇒≉ : ∀ {x y} → x < y → x ≉ y
<⇒≉ = ToStrict.<⇒≉
≤∧≉⇒< : ∀ {x y} → x ≤ y → x ≉ y → x < y
≤∧≉⇒< = ToStrict.≤∧≉⇒<
<⇒≱ : ∀ {x y} → x < y → ¬ (y ≤ x)
<⇒≱ = ToStrict.<⇒≱ antisym
≤⇒≯ : ∀ {x y} → x ≤ y → ¬ (y < x)
≤⇒≯ = ToStrict.≤⇒≯ antisym
≤-dec⇒≈-dec : Decidable _≤_ → Decidable _≈_
≤-dec⇒≈-dec _≤?_ x y with x ≤? y | y ≤? x
... | yes x≤y | yes y≤x = yes (antisym x≤y y≤x)
... | yes x≤y | no y≰x = no λ x≈y → contradiction (reflexive (Eq.sym x≈y)) y≰x
... | no x≰y | _ = no λ x≈y → contradiction (reflexive x≈y) x≰y
≤-dec⇒isDecPartialOrder : Decidable _≤_ → IsDecPartialOrder _≈_ _≤_
≤-dec⇒isDecPartialOrder _≤?_ = record
{ isPartialOrder = isPartialOrder
; _≟_ = ≤-dec⇒≈-dec _≤?_
; _≤?_ = _≤?_
}
mono⇒cong : ∀ {f} → f Preserves _≤_ ⟶ _≤_ → f Preserves _≈_ ⟶ _≈_
mono⇒cong = Consequences.mono⇒cong _≈_ _≈_ Eq.sym reflexive antisym
antimono⇒cong : ∀ {f} → f Preserves _≤_ ⟶ _≥_ → f Preserves _≈_ ⟶ _≈_
antimono⇒cong = Consequences.antimono⇒cong _≈_ _≈_ Eq.sym reflexive antisym